Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Can J Diabetes ; 47(2): 207-221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-2251442

RESUMO

Navigating the coronavirus disease-2019 (COVID-19, now COVID) pandemic has required resilience and creativity worldwide. Despite early challenges to productivity, more than 2,000 peer-reviewed articles on islet biology were published in 2021. Herein, we highlight noteworthy advances in islet research between January 2021 and April 2022, focussing on 5 areas. First, we discuss new insights into the role of glucokinase, mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase and mitochondrial function on insulin secretion from the pancreatic ß cell, provided by new genetically modified mouse models and live imaging. We then discuss a new connection between lipid handling and improved insulin secretion in the context of glucotoxicity, focussing on fatty acid-binding protein 4 and fetuin-A. Advances in high-throughput "omic" analysis evolved to where one can generate more finely tuned genetic and molecular profiles within broad classifications of type 1 diabetes and type 2 diabetes. Next, we highlight breakthroughs in diabetes treatment using stem cell-derived ß cells and innovative strategies to improve islet survival posttransplantation. Last, we update our understanding of the impact of severe acute respiratory syndrome-coronavirus-2 infection on pancreatic islet function and discuss current evidence regarding proposed links between COVID and new-onset diabetes. We address these breakthroughs in 2 settings: one for a scientific audience and the other for the public, particularly those living with or affected by diabetes. Bridging biomedical research in diabetes to the community living with or affected by diabetes, our partners living with type 1 diabetes or type 2 diabetes also provide their perspectives on these latest advances in islet biology.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Camundongos , Biologia , Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Humanos
2.
Diabetes ; 71(7): 1579-1590, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1834217

RESUMO

Recent studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may induce metabolic distress, leading to hyperglycemia in patients affected by coronavirus disease 19 (COVID-19). We investigated the potential indirect and direct effects of SARS-CoV-2 on human pancreatic islets in 10 patients who became hyperglycemic after COVID-19. Although there was no evidence of peripheral anti-islet autoimmunity, the serum of these patients displayed toxicity on human pancreatic islets, which could be abrogated by the use of anti-interleukin-1ß (IL-1ß), anti-IL-6, and anti-tumor necrosis factor α, cytokines known to be highly upregulated during COVID-19. Interestingly, the receptors of those aforementioned cytokines were highly expressed on human pancreatic islets. An increase in peripheral unmethylated INS DNA, a marker of cell death, was evident in several patients with COVID-19. Pathology of the pancreas from deceased hyperglycemic patients who had COVID-19 revealed mild lymphocytic infiltration of pancreatic islets and pancreatic lymph nodes. Moreover, SARS-CoV-2-specific viral RNA, along with the presence of several immature insulin granules or proinsulin, was detected in postmortem pancreatic tissues, suggestive of ß-cell-altered proinsulin processing, as well as ß-cell degeneration and hyperstimulation. These data demonstrate that SARS-CoV-2 may negatively affect human pancreatic islet function and survival by creating inflammatory conditions, possibly with a direct tropism, which may in turn lead to metabolic abnormalities observed in patients with COVID-19.


Assuntos
COVID-19 , Ilhotas Pancreáticas , COVID-19/complicações , Citocinas/metabolismo , Humanos , Hiperglicemia/virologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/virologia , Proinsulina/metabolismo , SARS-CoV-2
3.
Elife ; 112022 03 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1761118

RESUMO

The SARS-CoV-2 pandemic continues to rage around the world. At the same time, despite strong public health measures and high vaccination rates in some countries, a post-COVID-19 syndrome has emerged which lacks a clear definition, prevalence, or etiology. However, fatigue, dyspnea, brain fog, and lack of smell and/or taste are often characteristic of patients with this syndrome. These are evident more than a month after infection, and are labeled as Post-Acute Sequelae of CoV-2 (PASC) or commonly referred to as long-COVID. Metabolic dysfunction (i.e., obesity, insulin resistance, and diabetes mellitus) is a predisposing risk factor for severe acute COVID-19, and there is emerging evidence that this factor plus a chronic inflammatory state may predispose to PASC. In this article, we explore the potential pathogenic metabolic mechanisms that could underly both severe acute COVID-19 and PASC, and then consider how these might be targeted for future therapeutic approaches.


Assuntos
COVID-19/complicações , Suscetibilidade a Doenças , Metabolismo Energético , COVID-19/epidemiologia , COVID-19/etiologia , COVID-19/metabolismo , COVID-19/terapia , Diabetes Mellitus Tipo 2 , Gerenciamento Clínico , Glucose/metabolismo , Intolerância à Glucose , Humanos , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Medição de Risco , Fatores de Risco , Linfócitos T/imunologia , Linfócitos T/metabolismo , Síndrome de COVID-19 Pós-Aguda
4.
Trends Endocrinol Metab ; 32(11): 842-845, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1349597

RESUMO

The widespread extrapulmonary complications of coronavirus disease 2019 (COVID-19) have gained momentum; the pancreas is another major target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we take a closer look into potential pathological interactions. We provide an overview of the current knowledge and understanding of SARS-CoV-2 infection of the pancreas with a special focus on pancreatic islets and propose direct, indirect, and systemic mechanisms for pancreas injury as result of the COVID-19-diabetes fatal bidirectional relationship.


Assuntos
COVID-19/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Células Acinares/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Tropismo Viral
5.
Diabet Med ; 38(11): e14608, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1273085

RESUMO

AIMS: Aim of this study is to report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, responsible for coronavirus disease 2019 (COVID-19), as a possible cause for type 1 diabetes by providing an illustrative clinical case of a man aged 45 years presenting with antibody-negative diabetic ketoacidosis post-recovery from COVID-19 pneumonia and to explore the potential for SARS-CoV-2 to adhere to human islet cells. METHODS: Explanted human islet cells from three independent solid organ donors were incubated with the SARS-CoV-2 spike protein receptor biding domain (RBD) fused to a green fluorescent protein (GFP) or a control-GFP, with differential adherence established by flow cytometry. RESULTS: Flow cytometry revealed dose-dependent specific binding of RBD-GFP to islet cells when compared to control-GFP. CONCLUSIONS: Although a causal basis remains to be established, our case and in vitro data highlight a potential mechanism by which SARS-CoV-2 infection may result in antibody-negative type 1 diabetes.


Assuntos
COVID-19/terapia , Diabetes Mellitus Tipo 1/diagnóstico , Cetoacidose Diabética/diagnóstico , Ilhotas Pancreáticas/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/etiologia , Cetoacidose Diabética/etiologia , Cetoacidose Diabética/terapia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA